Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Olivier Renaudet, Pascal Dumy,*
 Christian Philouze and Marie-Thérèse Averbuch

LEDSS, UMR CNRS 5616, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France

Correspondence e-mail:
pascal.dumy@ujf-grenoble.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.065$
$w R$ factor $=0.035$
Data-to-parameter ratio $=10.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 2,3,6-tri-O-benzoyl- $\alpha-\mathrm{D}-x y l o-$ hexopyranosid-4-ulose

In the title compound, $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{9}$, the pyranose ring adopts a distorted chair conformation due to the presence of a ketone function at position 4 of the ring. The torsion angle of the exocyclic hydroxymethyl group is shown to be gauche-trans with respect to atoms $\mathrm{O}-1$ and $\mathrm{C}-4$, respectively.

Comment

The title compound, (I), represents a key synthetic intermediate, readily available from α-D-glucose, in which the 4-keto group is used to append various chemical functions (Molino et al., 1987). Methyl 2,3,6-tri-O-benzoyl- α-D-glucopyranoside was obtained by regioselective benzoylation of methyl α-D-glucopyranoside using tributylstannous anhydride. The title compound was obtained by subsequent oxidation with RuO_{4} in dichloromethane and recrystallization from a mixture of diethyl ether and petroleum ether. In the crystal structure of (I), the sugar ring adopts a distorted chair conformation, as defined by the Cremer \& Pople (1975) parameters $Q=0.545(4) \AA, \theta=19.7(2)^{\circ}$ and $\varphi_{2}=71.9(2)^{\circ}$. The endocyclic valence angles vary between 106.5 (2) and 116.3 (2) ${ }^{\circ}$ (Table 1), the latter corresponding to the keto function. The ring distortion is also emphasized by the endocyclic torsion angles, which show that the puckering is largest at C 1 and C 2 , and smallest at C 4 and C5. These values are such that the ketone function can adopt a conformation close to an ideal plane, with atom C4 displaced by only 0.023 (2) \AA from the plane defined by atoms $\mathrm{C} 3, \mathrm{O} 4$ and C 5 . The exocyclic hydroxymethyl group adopts a staggered gt conformation [$\omega=$ $64.5(2)^{\circ}$ for $\mathrm{O} 5-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 6$ and $-173.6(1)^{\circ}$ for $\mathrm{O} 6-\mathrm{C} 6-$ $\mathrm{C} 5-\mathrm{C} 4]$, which is typical for crystal structures containing galacto residues.

(I)

Experimental

Oxidation with ruthenium tetroxide of methyl 2,3,6-tri- O-benzoyl-dglucopyranoside (Ogawa et al., 1981) was performed following the literature procedure of Collins et al. (1969). The pure oxidized title compound was obtained after recrystallization from diethyl ether/ petroleum ether (m.p. 411 K). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): 8.07-7.38 ($m, 15 \mathrm{H}, \mathrm{H}-\mathrm{ar}$), $6.15\left(d, 1 \mathrm{H},{ }^{3} J_{2,3}=10.6 \mathrm{~Hz}, \mathrm{H}-3\right), 5.61(d d$,

Received 16 December 2002
Accepted 27 January 2003
Online 7 February 2003

Figure 1
An ORTEPII (Johnson, 1976) view of the title compound, with displacement ellipsoids drawn at the 25% probability level. H atoms have been omitted.
$\left.1 \mathrm{H},{ }^{3} J_{1,2}=3.4 \mathrm{~Hz}, \mathrm{H}-2\right), 5.37(d, 1 \mathrm{H}, \mathrm{H}-1), 4.86\left(d d, 1 \mathrm{H},{ }^{3} J_{5,6 \mathrm{a}}=3.3 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 4.73\left(d d, 1 \mathrm{H},{ }^{3} J_{5,6 \mathrm{~b}}=6.4 \mathrm{~Hz}, \mathrm{H}-5\right), 4.65(d d$, $1 \mathrm{H}, \mathrm{H}-6 b), 3.56\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (p.p.m.): 195.9 (C-4), 166.6 $(\mathrm{C}=\mathrm{O}), 165.9(\mathrm{C}=\mathrm{O}), 165.8(\mathrm{C}=\mathrm{O}), 134.0$.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{9}$
$M_{r}=504.49$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.848$ (5) A
$b=12.843$ (2) \AA
$c=21.551$ (4) \AA
$V=2449$ (1) \AA^{3}
$Z=4$
$D_{x}=1.368 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: none
4024 measured reflections
4024 independent reflections
3389 reflections with $I>0.1 \sigma(I)$

Refinement

Refinement on F
$R=0.065$
$w R=0.035$
$S=1.93$
3389 reflections
334 parameters

Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.3-11.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293.0 \mathrm{~K}$
Orthorhombic prism, colourless
$0.35 \times 0.34 \times 0.31 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=30.0^{\circ} \\
& h=0 \rightarrow 12 \\
& k=0 \rightarrow 18 \\
& l=0 \rightarrow 30 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 120 \text { reflections } \\
& \quad \text { intensity decay: } 0.3 \%
\end{aligned}
$$

H atoms were placed geometrically, then recalculated during the refinement and before the last refinement cycle. The absolute configuration of the molecule was inferred from the configuration of the starting material, viz. methyl- α-D-glucopyranoside.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.390(2)$	O7-C8	
O1-C7	$1.439(2)$	O8-C15	$1.202(2)$
O2-C2	$1.444(2)$	O9-C22	$1.191(2)$
O2-C8	$1.348(2)$	C1-C2	$1.195(2)$
O3-C3	$1.436(2)$	C2-C3	$1.528(3)$
O3-C15	$1.350(2)$	C3-C4	$1.504(2)$
O4-C4	$1.204(2)$	C4-C5	$1.519(2)$
O5-C1	$1.415(2)$	C5-C6	$1.531(2)$
O5-C5	$1.421(2)$	C8-C9	$1.492(2)$
O6-C6	$1.455(2)$	C15-C16	$1.478(2)$
O6-C22	$1.340(2)$	C22-C23	$1.493(2)$
			$1.490(2)$
C1-O1-C7	$113.0(2)$	O4-C4-C5	
C2-O2-C8	$117.2(1)$	C3-C4-C5	$121.3(2)$
C3-O3-C15	$117.1(1)$	O5-C5-C4	$116.6(2)$
C1-O5-C5	$115.4(1)$	O5-C5-C6	$111.3(1)$
C6-O6-C22	$115.3(1)$	C4-C5-C6	$108.0(1)$
O1-C1-O5	$113.2(1)$	O6-C6-C5	$110.4(1)$
O1-C1-C2	$107.7(1)$	O2-C8-O7	$107.2(1)$
O5-C1-C2	$106.9(1)$	O2-C8-C9	$122.7(2)$
O2-C2-C1	$111.6(1)$	O7-C8-C9	$111.6(2)$
O2-C2-C3	$108.0(1)$	O3-C15-O8	$125.7(2)$
C1-C2-C3	$109.6(1)$	O3-C15-C16	$124.6(2)$
O3-C3-C2	$111.0(1)$	O8-C15-C16	$110.3(1)$
O3-C3-C4	$106.5(1)$	O6-C22-O9	$125.0(2)$
C2-C3-C4	$110.7(1)$	O6-C22-C23	$123.2(2)$
O4-C4-C3	$122.1(2)$	O9-C22-C23	$112.1(2)$
			$124.6(2)$

Structure Corporation, 1992-1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

The authors acknowledge support of this work from the CNRS (ACI). This work was also supported by grant No. 98423548 from MENRT to OR.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Collins, P. M., Doganges, P. T., Kolarikol, A. \& Overend, W. G. (1969). Carbohydr. Res. 11, 199-206.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1992-1997). TEXSAN. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molino, B. F., Cusmano, J., Mootoo, D. R., Faghih, R. \& Fraser-Reid, B. (1987). Carbohydr. Res. 6, 479-493.
Ogawa, T. \& Matusi, M. (1981). Tetrahedron, 37, 2363-2369.

